જો વિધેય $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ નો પ્રદેશગણ $R$ હોય તો $m$ ની ........... શક્ય પુર્ણાક કિમતો મળે.
$3$
$4$
$6$
$7$
તદેવ વિધેય $I _{ N }: N \rightarrow N$, $I _{ N }$ $(x)=x$ $\forall $ $x \in N$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $I _{ N }$ વ્યાપ્ત હોવા છતાં $I _{ N }+ I _{ N }:$ $ N \rightarrow N$, $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ વ્યાપ્ત નથી.
જો $\,\,f(x) = \left\{ {\begin{array}{*{20}{c}}
{3 + x;\,\,\,\,\,x \geqslant 0} \\
{2 - 3x;\,\,\,\,\,x < 0}
\end{array}} \right.$ હોય તો $\mathop {\lim }\limits_{x \to 0} f(f(x))$ ની કિમત મેળવો.
વિધેય $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ નો પ્રદેશગણ ..... છે.
ધારો કે $f ( x )$ એ દ્રીઘાત બહુપદી છે અને મોટી ઘાતક નો સહગુણક $1$ છે કે જેથી $f(0)=p, p \neq 0$ અને $f(1)=\frac{1}{3}$ થાય. જો સમીકરણ $f(x)=0$ અને $fofofof (x)=0$ ને સામાન્ય બીજ હોય તો $f(-3)$ ની કિમંત $........$ થાય.
જો વિધેય $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ નો પ્રદેશ $(\alpha, \beta) \cup(\gamma, \delta]$ હોય, તો $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)=......$